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In this lecture, we will explore how to use op-amps to implement active filters.
Again, part of the contents of this lecture will be explored during Laboratory
Experiment 2 this week and next week.




Transfer Function of 1st order LP Filter

From Year 1 ADC Part 1 Lecture 11, slide 3. < More general if use complex frequency s to
R1 represent the quantity jw.
X O |' 3R |— OY < Covered in Signals and Systems module this
term, and Control Systems next term.
R2 < Express impedance of capacitor as Sicinstead of
R1=3R2=3R -
jwC
C 1/JwC —) - Capture both steady state (ac) and transient
behaviour .

Transfer function deflned as:
Y S R+1/sC 1+4+SRC

X(s) 4R+1/sC 14+4sRC
i m
Frequency response is calculated as )
Y(jw) _ 1+jwRC E
©
o

Zero freq q = ﬁ

HS)s=jo = %Gay = Trajwre
Easier to perform algebra manipulation than using jw.
Provides better intuitions on system behaviour.

-10}  Pole freqp = T

This simple filter is first-order low-pass with 1 pole and 1 01q p a 10q
zero. f(H)
The break frequency occurs when real and imaginary parts are equal in numerator (zero freq)
and denominator (pole freq).
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Consider the simple RC network shown. This was analysed in Year 1 ADC Lecture 11
(slide 3) already. However, in this case, we substitute s for jo. The variable s is
known as “complex frequency”. You will learn about this in two other modules:
Signals and Linear Systems, and in Control Engineering.

The reason s is used in preference to jo because frequency response H(jo) is only
valid if the circuit (or system) is in steady state (i.e. all transients have died down)
and all signals are expressed as sine waves. Using complex frequency s allows both
transient and steady state behaviours to be analysed.

The impedance of a capacitor is 1/sC instead of 1/j»C.

Furthermore, you will learn in other modules the relationship between the transfer
function H(s) expressed as products of factors in s, and how this relates to the idea
of poles and zeroes. (This is outside the scope of this module.)




1st order Active Filter

1st order passive filter 18t order active filter
with 1 pole gain of 1

R
Vo o F4—o0Veu B Voo |} Vo
. L
I f, = 1/(2nRC)

C

E = 1/(27RC)

= Slope: -20dB/decade = Slope: -20dB/decade
1st order active filter

gain of K

N Vout(Jw) K
c I H(S)lsmjo = -2 =~
fp — 1/(27TRC) Vin(Jw) 1+jwRC
= Slope: -20dB/decade
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Simple RC network as a low pass filter suffers from loading effect — as soon as a load
is applied to the output, the filter characteristic changes.

One can simple add a unity gain buffer (x1 amplifier) to isolate the output from the
input. This is a simple 1st order active filter. It is called an active filter because this
circuit requires an amplifier with "active’ component (i.e. transistors and
amplification).

One R and one C resulted in a 15t order circuit with one pole (a concept to be
covered next term in the Control Engineering module). The pole frequency f;, of the
active filter is now NOT affected by the load (up to the op-amp output current

limits). Itis given by f,, = Tch' At this frequency, the gain of the filter is -3dB.

Instead of using a unity gain amplifier, we can use a non-inverting amplifier with a
gain of K as shown.

In all three cases, the low pass filter has an attenuation that falls off at a rate of -
20dB per decade.

This filter is first order because it has only one reactive component (the capacitor).
A second order filter will have TWO capacitors, and the fall off rate will be -2 x 20dB
per decade. Generally, an nth order filter has a fall off rate of — n x 20dB/decade.




2nd order Active Lowpass Filter

2n order active filter with
2 poles and dc gain of K

R R

°T C T Vour jw) K
=1/(2nRC H(s _ ' _ .
gTOPe'/-(AdeB/c)iecade -4 © s=jo  Vin(jo) (1 +jwRC)?

2" order Sallen-Key Filter (1955)
c |

R R fp = 1/(27RC)

DC gain: K

c —— Slope: -40dB/decade
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Cascading two identical 1st order filters gives a 2"d order filter. The pole frequency
remains the same as before, but the attenuation at this frequency is now -6dB
instead of -3dB. The fall off rate is, as expected, -40dB/decade.

Instead of using two op-amps, one can connect the ground of the left capacitor to
the output of the 2" op-amp as shown above. This feedback arrangement

eliminates the need of the unity gain buffer amplifier and implements a 2nd order
low pass filter using two capacitors, two resistors, and an amplifier with gain of K.

K can be set to 1 but must be lower than 3 (otherwise the circuit will become
unstable).

This circuit arrangement (called topology) is known as a Sallen-Key filter.




Sallen-Key Filter Topology

Z3

1
I
Z1 z2 v
Vin O—E VX |]J§| |X1 O Vout
Z4

Invented by R.P. Sallen and E.L. Key in 1955 using valves as active devices (!)
Z1 to Z4 are arbitrary impedance from resistors, capacitors or inductors.
Assume amplifier gain is 1 (can be generalised to K), Vy = Vj.

Apply KCL to Vy yields:
Vin = Vy Vout_I/)c+Vout_‘/7c_

Apply KCL at Vy yields:

Z. Z.
Ve = Vour + Z_ZVout = Vour(1 + Z_z
4 4

Combining the two gives a general transfer function equation:

Vout _ 257
Vin  Z1Zy+ Z3(Z1+ 7)) + Z3Z,
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The circuit shown in this slide is the general form of Sallen and Key filter published in
1955. The passive components are replaced by generic impedances Z1 to Z4.

For simplicity, we assume K=1.

Z1 to Z4 can be resistors, capacitors or inductors, although normally only resistors
and capacitors are used because inductors are not easy to manufacture in
integrated circuits, and their performance are generally not high enough for
implementing good filter circuits.

To derive the transfer function of this circuit (i.e. Vyy¢/Vin), we can apply KCL to the
circuit nodes X and Y as shown in the slide.

By choosing whether to use resistor or capacitor for the components in this circuit
topology, one can implement low pass, high pass, band pass and band stop filters.
The Sallen-Key filter is therefore general and is one of most widely used active filter
in electronic circuits.




2nd order Sallen-Key Lowpass Filter

” Vuut — Z3Z4

Vin 2123 + Z3(Z1 + Z3) + 2324
R1 R2 Vy
Vin . 1 V,
A e
7, =Ry, Z,=R
c2 1 1 2 2
I Zs=1/sC; , Zs=1/sC,

Using the transfer function equation H(s) from previous slice:
1
Voue(s) _ 52C1CZ

H(s) = =
VinS)  RiRy + - (Ry + Rp) +
1

S
Szclcz

Rearrange and put this in a standard form for a 2" order lowpass system:

Voue (s) _ 1
Vin(S) 1+C2(R1+R2)S+61C2R1R2 52
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Consider the above circuit topology with R1, R2 and C1, C2. Assuming that K =1 for
simplicity. We can substitute these component values to Z1 to Z4, and derive the
above transfer function.

Note that we are using the s-notation to denote the impedance of capacitor as 1/sC.
You have learned Laplace transform in Year 1 mathematics. You will also be learning
about systems theory where s is used as the Laplace transform variable. The
general idea is that s = a + jw, and is often referred to as ‘complex frequency’.

Unlike Fourier transform that only uses jw and is only applicable to steady state
conditions, using complex frequency allows us to model systems for both transient
and steady state behaviour. Further, using s and Laplace transform, we convert
differential equations into algebra equations, which makes analysis easier.

The ratio of output to input in the s-domain is known as transfer function H(s).

In this case, we obtain the transfer function of this Salley-Key low pass filter circuit
into the form shown above with denominator with s to the power of 2 —it is
therefore a 2" order system equation.




Significance of wy and Q (1)

Vin O—E 1 x1 O Vout Z; =Ry, =R,
| I
v 1/sC; , Z,=1/sC,

x
N

w
Il

Put this into the standard form of a 2" order lowpass filter is:

Vout _ 1 _ 1
Vin 1+$S+Zigsz "~ 14+C2(R1+R3) s+C1CaR Ry 52
wy is the cutoff frequency (rad/s)
Q is the quality factor w a
{ is the damping ratio fe= ;: =T in Hz

=
Q=%

w 1
Therefore, the cutoff frequency is: f, = ﬁ = m Hz
1t2R182

v C1C2R1R,
The quality factor Qis: Q = ~—————
C2(R1+R3)

PYKC 21 Oct 2025 EE2 - Circuits & Systems Lecture 6 Slide 7

Let us now examine the significance of the coefficient (constant values) associated
with the s and s2 terms in the denominator.

The coefficient of the s2 term is C;C,R1 R,, and it defines the break or cutoff
frequency w of the filter.

The coefficient of the s termis C,(R; + R;), and it specifies (given wg) the quality
factor Q of the filter, which is directly related to the damping factor ¢ (pronounced
as 'zeta’) of the system.

In filter circuits, we use Q instead of {. In control theory, we use { instead of Q.

In general, a filter with a higher Q factor means that it is more ‘selective’ and has a
more ‘peaky’ characteristics. Higher Q also means the circuit tends to be more
oscillatory.




Significance of wy and Q (2)

Rewrite the transfer function as:

2 w

V, s 1 _*0

H(s) = ;ut((s)) = PR T, 2+wa(;0+ 2 fﬂ_%
i + —=+ =5 2+ s+ w

m woQ " wg Q 0

% wq is the cut-off frequency of filter.

Gain + DC gain of filter is 1 (i.e. s=0).

(dB) e < Q determine how ‘peaky’ the filter is.

S « Butterworth filter: 2{ = 1.414,

Q=2 =L =0.707.
2¢
0 < Maximally flat gain in passband
< Monotonically decreasing gain in
Q=0.707 7 stop band.
Q=05
0 fc Frequency, f —
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We can re-arrange the transfer function as shown above to demonstrates the
significance of wgy and Q.

wy defines the frequency at which the low pass filter starts attenuating the input
signal. However, Q governs how peaky the filter response is at the cutoff frequency.
If @ <0.707, the filter drop off early and there is no resonance at wy.

If Q > 0.707, the filter characteristics starts to show higher than x1 gain at wg. The
higher the Q value, higher the gain at this frequency.

Q=0.707 is a special case when the filter is known as ‘maximally flat” meaning that
the gain stays at 0dB as long as possible before falling off, but it never rises above
0dB. Such maximally flat filter is known as a Butterworth filter.

In the case of Q = 0.5, the gain also never goes above 0dB, but the fall off starts
much earlier and therefore the gain characteristic is not as flat as the maximally flat
case.




A simple Sallen-Key filter (from Lab 2)

C1

Il
330

R1 R2 ’\
Vin [ 18k I x1 Ovout

Vi ‘

il
P

Simplify by making Ry = R, = R = 18kQ, and C; = C, = C = 3.3nF.

1 1
m = SmRC = 2.7kHz and

_ JRiR2C1C; _ RC 1

C,(R1+Ry)  (Cx2R) 2’

The cutoff frequency is: f, =

R/
* Q

This is NOT a Butterworth filter because Q is not 0.707 or 17

7
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Let us consider a concrete Sallen-Key filter as used in Lab Experiment 2.
Here, R1=R2=R=18k€2. C1=C2=C=3.3nF.

The transfer function now simplifies significantly resulting in simple equation for
calcuting the break (or cutoff) frequency:
£ = 1 1
¢ 2n/RR;CiC;  2mRC

= 2.7kHz

However, this filter has a Q value of 0.5. This is therefore not a Butterworth filter.
Note that in this particular case, Q is NOT dependent of RC, which is fixed by the
cutoff frequency!

To specify a Q value different from 2, one can either use different values for C1 and
C2, or introduce a gain to the op-amp such that the gainis 1 <K< 3,




Sallen-Key filter with gain = K

C
|
1

I o x K amplifier

xK —O Vout

Keep same R and C values, fix Q by changing gain of op-amp K

Left as an exercise to proof: ﬂ
Vour (s) _ 1

H(s) = =K x
=79 T+ (3 —K)RCs + R2C2 52

. P S |
Therefore, cutoff frequency f. is same as before: f, = T~ InRC

1 1 1
And, Q —w—oXm— bt

Therefore, to get a Butterworth filter with this topology, Q = 0.707, and

K =3 —-==1.586.

1
Q
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Consider the above circuit, which is identical to the circuit before except that the
amplifier has gain of K instead of 1.

It is left as a tutorial exercise for you to derive the transfer function, which is shown
above.

The cutoff frequency, which is dependent only on RC product, it is therefore
unchanged as the previous circuit.

However, Q can now be changed with K. For Butterworth filter, Qis 0.707, and K is
derived to be 1.586.

The xK amplifier can easily be implemented using an op-amp in the non-inverting
amplifier configuration as shown in the slie.

10




General Procedure: Butterworth LP filter

1. Determine the required cutoff frequency f,.

2. Calculate R and C product with: RC = 27+f

3. Pick a suitable value of C >> input capacitance of op-amp (say in nF range).
4. Calculate value of R to give the required cutoff frequency.

5. Determine order of filter depending on required attenuation rate. Filter attenuation rate is -
20 x n dB/decade, for an nth order filter.

6. Round n to the nearest high even number. You will need n/2 Salley-Key filter stages.

7. Use the table below to design gain of each stage of the filter. For example, for a 4" order
Butterworth filter, we need two Sallen-Key stages with gain of 1.152 followed by 2.235.

8. Choose resistors for op-amps feedback paths to provides specified gain values.

4th order Butterworth LP Filter ORDER n Gainvalues K
2 1.586
. Sallen-Key | Sallen-Key | 4 1.152, 2.235
K=1.152 K=2.235 6 1.068, 1.586, 2.483
8 1.038, 1.337, 1.889, 2.610
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This slide shows the steps in designing a Butterworth low pass filter using the Sallen-
Key topology with identical R and C the circuits.

Note that one must use the specified K values in the different stages of the filter.

Since each Sallen-Key stage implements a 2"4 order responses, there is no real
reason to have odd order of filter. For example, if one needs a 3 order filter, one
would need 2 op-amps in any case. Therefore one would use a 4t order filter with
same cutoff frequency but steeper attenuation.

Finally, it is IMPORTANT TO NOTE that implementing filters using this circuit
topology has one disadvantage. The DC gain of such a filter is NOT 0dB or x1.
Instead, the 2nd order filter has a DC gain of 1.586 or +4dB. However, the frequency
response is FLAT.

11




Other Sallen-Key filter circuits

R
L1
c \ c
! It x K O Vout

Low Pass Filter c ‘[ 1 High Pass Filter f = 1 —
I Jfen =377C “ = 27RC
= = fe

x K O Vout Vin O

c1 ,&
—i L |
Vo o St e
PR c1 R2 1 \ /
M 2mR Gy I Band Pass / Band Stop Filter Jeu = 3aRec; -
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To implement a high pass filter, capacitors are swapped into resistors, and vice
versa.

To implement a band pass or band stop filter, cascade a low pass filter with a high
pass filter and design the break frequencies accordingly.

12




Using different values for R1 and R2

Revisit transfer function of filter from slide 7::

(@]

Yout _ 1 1

Vin  1+——s+—s2  1+C(R1+Rz) s+CZRR 52
woQ"  w§

——O Vout

Design step: I

> Choose C in a reasonable range, e.g. 100pF — 10nF. =
Write down eq.1 for a given cutoff frequency.
Write down eq. 2 for a given Q value.
Solve the two equations for R1 and R2 values.
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So far, we have designed the Sallen-Key filter using same values for R and C. We
then use RC product to determine the cutoff frequency and K to determine the Q
factor.

This design method works well and is easy to follow, but has the disadvantage of
resulting in a DC gain higher than 1.

If ensure that the gain is x1 or 0dB at DC, we can go back to using x1 unity gain
amplifier. However, we now use two different values for R1 and R2. In this way, we
are still able to design for any w, and Q values.
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